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The water soluble coal tar pitches (WS-CTPs) were successfully prepared and used to construct the MnO2@C composite
materials by a hydrothermal method. It is interestingly observed that the structures and morphologies of MnO2@C materials can
be controlled by controlling the dosages of WS-CTPs and KMnO4. Meanwhile, it is aware that MnO2 exists in the MnO2@C
materials in an amorphous state. Compared with MnO2, MnO2@C materials output a remarkable improvement in electro-
chemical performance. For instance, MnO2@C-0.3 shows the storage capacity at 965.7 mA h g−1 after 300 cycles at a current
density of 0.1 A g−1. In addition, after 600 cycles at a current density of 1.0 A g−1, the storage capacity of MnO2@C-0.3 still
keeps 450.3 mA h g−1, indicating that MnO2@C-0.3 owns tremendous cycle stability at a high current density. In view of the fact
that the coal tar pitches possess great cost advantages, the strategy of using WS-CTPs as a carbon source to cover the metal
oxides is a competitive way to expand the application of metal oxides in the fabrication of electrodes of LIBs.
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1 Introduction

Nowadays, the green energy sources have received attention
from numerous nations worldwide as a means of reducing

carbon emissions. Accelerating the development of energy
storage systems (ESSs) is quickly becoming an effective
countermeasure to store the energies which are produced by
solar and wind energies. Lithium-ion batteries (LIBs) are a
better choice for developing the ESSs due to their high en-
ergy density and long cycle life. Nevertheless, the low sto-
rage capacity of graphites is not satisfactory for the growing
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demands to develop ESSs [1–3].
As an alternative, a lot of research groups embark on the

studies of metal oxides because they have extremely high
storage capacity [4–7]. Among them, MnO2 has been given a
lot of attention because they possess the advantages such as
high theoretical capacity (1230 mA h g−1) and abundant re-
sources [8,9]. Zhang et al. [10] successfully prepared the
nano MnO2 with high crystallinity and revealed it shows the
significantly high storage capacity (1095 mA h g−1) at
0.1 A g−1. However, the large volume change generated
during the storage of Li+ facilely causes the collapse of the
crystal, which results in the reduction of the long cycle
performance of MnO2. Meanwhile, the poor conductivity of
MnO2 easily leads to the production of polarization, and
further decreases its rate performance [11,12].
It is well known that covering the carbon materials on the

surface of MnO2 is an effective way to solve the aforemen-
tioned problems. This method not only provides a possible
solution to restrict the lattice expansion problem, but also
provides an excellent conductive network for metal oxides,
improving storage capacity [13,14]. Up to now, platy of
carbon sources such as graphene and carbon nanotubes are
widely used to cover the metal oxides [15–17]. However, the
complex fabrication process and extremely high fabrication
costs restrict the actual applications of these carbon sources.
Coal tar pitches based carbons are coming into view of re-
searchers because they have the contents of polycyclic aro-
matic hydrocarbons (PAHs) so that the carbons prepared by
coal tar pitches exhibit the significantly excellent con-
ductivity and cost advantage [18,19]. Zeng et al. [14] used
coal tar pitches as carbon sources and a template method to
construct carbon substrates, the MnO2/PGC composite ma-
terials were synthesized based on the fabricated carbon
substrates and in situ precipitation method. Wang et al. [4]
fabricated the metal oxide/carbon composite materials by
directly mixing the coal tar pitches with the metal oxides.
Nevertheless, these methods can not completely address is-
sues such as agglomeration among the metal oxide particles
and control of the sizes of metal oxides.
To address the aforementioned problems, the water soluble

coal tar pitches (WS-CTPs) were prepared and used as the
covering materials. TheWS-CTPs possess the characteristics
of good water solubility and contain a lot of PAHs, causing
that the WS-CTPs are able to become excellent carbon
sources for fabricating the metal oxides/carbon composite
materials. Thus, based on the usage of a hydrothermal
method, the novel WS-CTPs based MnO2@C materials were
successfully synthesized by using the KMnO4 and WS-
CTPs. It is interestingly found that MnO2 exists in the
MnO2@C materials in the amorphous state, and the
MnO2@C composite materials manifest different structures
with conversing the dosages of WS-CTPs.
After detailed electrochemical investigations, it is ob-

served that the MnO2@C materials exhibit the fabulous
storage capacity. It is noteworthy that a lot of defects on
amorphous MnO2 provided the active sites for storing Li+,
leading to the enhancement of storage capacity. Considering
the fact that coal tar pitches are industrial commodities, the
WS-CTPs based MnO2@C materials exhibit significant cost
advantages in the fabrication of EES.

2 Experimental

2.1 Characterization

The AVATAR 360 infrared spectrometer (FT-IR) was used to
analyze the functional groups on the surfaces of the samples.
The X-ray diffraction (XRD) patterns were measured with an
X’pert Powder instrument from PANalytical at 40.0 kV and
40 mA with Cu-Kα radiation. The results of X-ray photo-
electron spectroscopy (XPS) were verified by a K-Alpha
instrument using an Al-Kα source (12 kV) from Thermo
Fisher Scientific, USA. The structures of the samples were
analyzed by the HR 800 laser Raman spectrometer of Horiba
Jobin Yvon company, France. Nitrogen adsorption and
desorption isotherms were measured by a Quadrasorb auto-
sorb-iQ surface analyzer which was purchased from Quan-
tachrome Instruments, USA. The specific surface area was
evaluated, according to the Brunauer-Emmett-Teller (BET)
method. Based on a DFT model the size distributions were
evaluated. Morphological features were described by scan-
ning electron microscopy (SEM) using an instrument pro-
duced by Carl Zeiss AG, Germany. TEMmeasurements were
performed on the HF-3300 system (Hitachi Co. Ltd., Tokyo,
Japan). Thermogravimetry (TG) measurements were re-
corded using a Rigaku TG-DTA8122 thermal analyzer under
a flow of air with a heating rate of 10°C/min. Cyclic vol-
tammetry (CV) and electrochemical impedance spectro-
scopy (over a frequency range of 100 kHz–0.01 Hz and the
amplitude was 5 mV) were tested by CHI660E electro-
chemical workstation (ChenHua, Shanghai, China).

2.2 Preparations of water soluble coal tar pitch based
carbons (WS-CTPCs)

The coal tar pitch (5 g) was added in a mortar and ground in
size which is less than 45 μm. Then, the sulfuric acid (95 wt%–
98 wt%, 70 mL) and nitric acid (65 wt%–68 wt%, 30 mL)
were added to a round-bottom flask, and then this acid
mixture was stirred for 5 h at 40°C. After the reaction, the
mixture was filtered, and the obtained solids were washed by
de-ionized water until the pH value of washed solution be-
came neutral. The obtained solids were mixed with NaOH
(1 mol L−1) until the pH value of the obtained mixture was
over 12, and then this mixture was continuously stirred for
1 h at 80°C. Thereafter, the HCl (1 mol L−1) was added to the
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same mixture until its pH value was smaller than 2. At the
same time, it was observed that black solids formed in this
mixture. The solids were obtained by centrifugal separation
and then placed in a drying oven for 12 h at 80°C. Finally, the
obtained solids were named as water soluble coal tar pitches
(WS-CTPs), and placed in a tube furnace for 5 h at 400°C in
N2 atmosphere. The obtained carbons that are processed with
carbonization were named WS-CTPCs.

2.3 Preparation of CTPs based MnO2@C composite
materials

The KMnO4 (0.5 g), H2SO4 (0.3 mL) and deionized water
(15 mL) were mixed, and then this mixture was named as α
solution. WS-CTPs were dissolved in the deionized water
(20 mL), and the 1 mol L−1 NaOH was dropped into the
solutions containing WS-CTPs until its pH value became 10.
The solution containing WS-CTPs was named β solution.
The β solution was mixed with α solution, and then the ob-
tained mixture was stirred uniformly. This mixture was
placed in a high-pressure reactor for 6 h at 150°C. After
cooling down to the room temperature, this mixture was
filtered, and the obtained solids were placed in a drying oven
for 12 h at 80°C. Finally, the obtained solids were placed in a
tube furnace for 5 h at 400°C in N2 atmosphere. According to
the adding amount of WS-CTPs (0.3, 0.4 and 0.5 g), the
obtained MnO2@C composite materials were named as
MnO2@C–X (X = 0.3, 0.4 and 0.5), respectively. Never-
theless, the solids did not form when a dosage of WS-CTPs
was set at 0.2 g.

2.4 Electrochemical measurements

The electrochemical cells were assembled by using the
MnO2@C composite materials. The MnO2@C composite
materials (0.08 g) were respectively mixed with acetylene
black (0.015 g) and polyvinylidine fluoride (PVDF) binder
(0.005 g) in a weight ratio of 80꞉15꞉5 in N-methyl-2-pyrro-
lidone (NMP) solution. The fabricated slurry was coated on

the Cu foil and dried in a vacuum drying oven at 80°C for 1 h
so as to remove the solution. Continuously, the Cu foil with
the active materials was dried at 120°C for 12 h, and cut into
round shape strips of φ 11 mm. The mass loading of the
active materials was at 1.20 mg/cm2. The two-electrode
electrochemical cells (CR2032 coin-type) were assembled in
a glove box filled with high-purity argon. The lithium metal
foil (φ 15.60 mm × 0.45 mm) was a reference electrode.
Celgard 2400 micro-porous membrane was a separator, and
1 mol L−1 LiPF6 in the mixture of EC, DMC, EMC (1꞉1꞉1, vol%)
was an electrolyte. Galvanostatic charge-discharge tests were
conducted by LAND (CT 2001A) battery test system at a
0.01–3.00 V. CV and electrochemical impedance spectro-
scopy (EIS) measurements were performed by using the CHI
660E. The CV curves were recorded in a voltage region of
0.01–3.00 V at a scan rate of 0.2 mV/s. The impedance
spectra were recorded in a frequency range of 100 kHz–
0.01 Hz.

3 Results and discussion

The synthesis procedures of MnO2@C-0.3 material are de-
scribed in Figure 1. The carbon contents in MnO2@C ma-
terials were first determined by TGA measurements (Figure
S1). The slight mass loss occurring below 200°C is generally
attributed to the loss of water. The significant weight losses
were observed at a temperature range of 350°C‒500°C,
which was ascribed to the burning of carbons of MnO2@C
materials. When the temperature was increased to 550°C, the
weight loss became negligible [20,21]. After calculations,
the carbon contents of MnO2@C-0.3, MnO2@C-0.4 and
MnO2@C-0.5 were 34%, 45%, and 53%, respectively.
In the comparison with the CTPs, the conversions of

groups on WS-CTPs were verified by FT-IR measurements.
It was distinct that novel peaks of 1045, 1345, 1530 and
1720 cm−1 corresponding to the –C–O, –C–OH, –NO2 and
–C=O groups appeared in the WS-CTPs (Figure S2(a))
[22–24]. Meanwhile, the intensity of 3420 cm−1 attributing to

Figure 1 (Color online) Synthesis procedures of MnO2@C-0.3 material.
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the –OH group increased in the WS-CTPs. The existences of
hydrophilic functional groups cause that WS-CTPs are able
to dissolve in water (Figure S2(b)). Zhang et al. [25] in-
dicated that the oxygen functional groups on the surface of
carbon materials can help to increase the dispersion ability of
carbon materials and the adsorption ability for metal ions,
leading to the excellent dispersion of nano-sized metal oxide.
Likewise, it is also considerable that nano MnO2 can be
dispersed in carbon substrates very well.
To inquire into the chemical states of MnO2@C materials,

the XPS measurements were performed in detail. As shown
in Figure 2(a), the binding energies of Mn 2p1/2 and Mn 2p3/2
were observed at 653.0 and 641.2 eV, respectively. Espe-
cially, the differences between the binding energies are
11.8 eV, which corresponds to a feature of MnO2 [26]. After
fitting the two peaks of Mn 2p1/2 and Mn 2p3/2, the mixed
oxidation states of Mn4+ and Mn3+ were observed at 655.0,
643.4 eV (Mn4+) and 653.2, 641.4 eV (Mn3+), respectively
[27]. At the present stage, the existence of Mn3+ demon-
strates the abundant structural defects nature, which probably
plays a role to facilitate the formation of the amorphous state
[28,29]. The peak of N 1s was able to be fitted to the
~398.5 eV (N-6) and ~400.0 eV (N-5), respectively, in-
dicating that N elements of WS-CTPs exist in MnO2@C as
N-6 and N-5 types, which can facilitate the infiltration and
charge transfer, leading to the improvement of storage ca-

pacity [30,31] (Figure 2(b)). In addition, the N contents in
MnO2@C materials were calculated as 3.81 at%, 5.18 at%
and 6.47 at%, respectively, revealing that N contents slightly
increase with increasing the dosages of water soluble pitches
(Figure S3).
The structure of MnO2 in MnO2@C materials was verified

by the XRD measurements (Figure 3(a)). Similar to the
synthesis process of MnO2@C, the MnO2 was also synthe-
sized in our studies. In accordance with the standard card
(ICOD No.00-044-0141), it was aware that prepared MnO2

only exhibited the tetragonal structure [32]. Nevertheless, the
analogous structure was not observed in the MnO2@C en-
tirely, indicating that MnO2 existed in MnO2@C composite
materials as an amorphous state. It is thought that the addi-
tions of WS-CTPs prevent the growth of crystal lattices,
causing the MnO2 of MnO2@C composite materials to be in
an amorphous state. On the other hand, the peak of 25° at-
tributing to the (002) increased with increasing the dosages
of WS-CTPs, revealing that carbon contents in MnO2@C
increased with the increasing the additional dosages of WS-
CTPs (Figure 3(a)).
The structures of MnO2 and MnO2@C materials were also

verified by Raman measurements (Figure 3(b)). Similar to
the general carbon materials, the D and G peaks were ob-
served at 1357.5 and 1587.3 cm−1, respectively. In addition,
the intensity of D is obviously stronger than G, indicating

Figure 2 (Color online) XPS fitting results of Mn 2p1/2 and Mn 2p3/2 (a) and N 1s (b) of MnO2@C-0.3 material.

Figure 3 (Color online) (a) XRD pattern of MnO2, WS-CTPCs and MnO2@C materials; (b) Raman spectra of MnO2, WS-CTPCs and MnO2@C materials;
(c) TEM image of MnO2@C-0.3 material.
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that carbons in MnO2@C are in the amorphous state [24,33].
Compared with the MnO2, the characteristic peak of Mn–O
(648.9 cm−1) slightly shifted to the right and then became
broad in the MnO2@C materials, which suggests that the
MnO2 of the MnO2@C materials is in the amorphous state
[34,35].
In the TEM image, the long-range ordered structures were

not observed in the MnO2@C materials, which was in-
dicative that the MnO2 and carbons in the MnO2@C mate-
rials exist in an amorphous state. The corresponding fast
Fourier transform (FFT) image can further confirm the
amorphous nature of MnO2@C materials (Figure 3(c)).
Additionally, it was different from the characteristic inter-
lamellar spacing (0.363 nm) of carbons, an observation of
lattice fringes with an interplane distance of 0.690 nm is
probably attributed to the MnO2 [17,29,36]. These afore-
mentioned XPS, XRD, Raman and TEM measurements
furnish convincing proof that MnO2 compounds exist in the
MnO2@C composite materials as an amorphous state.
The morphologies of MnO2 and MnO2@C materials were

described in (Figure 4(a)–(c)). Firstly, the synthesized MnO2

is constructed by the nano-sized fibers with a witch of
~48 nm, as shown in Figure S4. By contrast, it is obvious that
the morphologies of MnO2 exceedingly changed in
MnO2@C materials (Figure 4(a)–(c)). One possible ex-
planation for this may be the hydrophilic functional groups in
WS-CTPs break the formation of MnO2 crystals. It is note-
worthy that MnO2@C-0.3 shows the well-developed and
cross-linked pore structures, which facilely facilitate the in-
filtration of electrolyte to improve the charge transfer
[37,38]. Additionally, SEM-EDX mapping indicates that C,
O, Mn and N elements dispersed homogeneously (Figure

S5). With increasing the dosages of WS-CTPs, it was ob-
served that a lot of spherical particles fused to each other,
leading to the formations of rodlike structures in MnO2@C-
0.4 material. Furthermore, the MnO2@C-0.5 approximately
was the uneven block structure, which implies the poor
dispersion between each component of metal oxide@C
composites. The noticeable conversions of morphologies are
likely caused to the increase of hydrogen bonds between the
–COOH and –OH groups of WS-CTPs in reactive cases,
with increasing the addition amount of WS-CTPs. These
hydrogen bond interactions among the coal tar pitches can
decrease the thermal decompositions of coal tar pitches,
decreasing the formation of complex porous structures.
Meanwhile, the hydrogen bond interactions also decrease the
dispersion of MnO2 in MnO2@C materials, which is able to
decrease the formations of complex porous structures [39].
The nitrogen adsorption experiment was performed to

examine the pore characteristics of MnO2@C materials
(Figure S6). After calculations, the specific surface areas of
MnO2, MnO2@C-0.3, MnO2@C-0.4 and MnO2@C-0.5 were
45.2, 84.7, 362.4 and 290.7 m2 g−1, respectively (Table S1).
Compared with the MnO2@C-0.4 and MnO2@C-0.5, the
MnO2@C-0.3 owned extremely complex porous structures
(Figure 4(d)). In particular, the existences of numerous meso-
porous in MnO2@C-0.3 are able to provide a tremendous
transmission channel for Li+ ions, causing the chemical ki-
netics of MnO2@C-0.3 to increase remarkably [40–43].
On the basis of evaluations for structures of MnO2@C

materials, their electrochemical performance was syntheti-
cally investigated. In the cycling performance, the MnO2

only showed the storage capacity at 60 mA h g−1 after 100
cycles. By contrary, the MnO2@C-0.3, MnO2@C-0.4 and

Figure 4 (Color online) (a)–(c) SEM morphologies of MnO2@C materials; (d) pore size distribution curves of MnO2 and MnO2@C materials.
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MnO2@C-0.5 exhibited the storage capacity at 865.2, 647.2
and 420.9 mA h g−1 after 100 cycles, respectively. These
results indicate that covering carbon materials on the surface
of MnO2 is an efficacious way to enhance the actual storage
capacity of MnO2 (Figure 5(a)). Meanwhile, the formation of
MnO2 in the amorphous state is also beneficial to prevent the
breaking of structures in the repeated Li insertion-extraction
process, enhancing the storage capacity and cycling stability
[44–46]. Similar to the general metal oxides such as MnOx,
Fe2O3 and Co3O4, the trend from decline to rise in cycling
performance is also obviously observed in MnO2@C-0.3.
Likewise, with the proceeding of the charge-discharge pro-
cess, the breaking of SEI and then forming of a polymeric
gel-like film cause an appearance of the above-mentioned
phenomenon in the cycling performance of MnO2@C-0.3
[30,47,48].
As shown in Figure 5(b), the MnO2@C-0.3 manifested

more tremendous rate performance than others. For instance,
when the current densities were set at 0.1, 0.2, 0.5, 1.0, 2.0
and 5.0 A g−1, the storage capacity of MnO2@C-0.3 was
734.1, 586.8, 516.8, 428.2, 318.9 and 129.5 mA h g−1, re-
spectively. As shown in Figure 5(c)–(d), the long cycling
stability of MnO2@C-0.3 was also investigated. Surpri-
singly, after the initial decrease, the discharge capacity of
MnO2@C-0.3 gradually increases to 965.7 mA h g−1 at
0.1 A g−1 after 300 cycles. Furthermore, MnO2@C-0.3 still

possesses an excellent capacity of 450.3 mA h g−1 after 600
cycles, even at a higher current density of 1.0 A g−1. As far as
reversible capacity and rate performance are concerned, it is
clear that the MnO2@C-0.3 presents superior lithium storage
performance compared with some previously reported
manganese oxides (Table S2).
CV curves of MnO2 and MnO2@C materials were illu-

strated in Figures S7(a) and 6(a)–(c). As shown in Figure S7(a),
two reductive peaks were observed at 1.8 and 1.0 V in the
first cycle, respectively, which correspond to the reduction
Mn4+ to Mn2+ (MnO2+2Li

++2e− → MnO+Li2O) and the
further reduction from Mn2+ to Mn0 (MnO+2Li++2e− →Mn
+Li2O), respectively [10]. The reductive peak at 0.1 V in the
first cycle was generally attributed to the formation of solid
electrolyte interphase (SEI) and side reactions between Li+

and active materials. In addition, the oxidative peak at 1.1 V
was considered a result of a reaction of Mn0 to Mn2+ [14,16].
However, these reductive and oxidative peaks were rarely
observed from the second cycle, which is possibly due to the
breaking structures of MnO2.
On the basis of analyses of MnO2, the electrochemical

characteristics of MnO2@C-0.3 were performed in detail.
The two reductive peaks (0.7 and 1.4 V) appear at the second
cycle of MnO2@C-0.3, corresponding to a two-step possible
reduction process Mn3+/4+ to Mn2+, Mn2+ to Mn0 (Figure 6(a)).
Two oxidative peaks located in 1.1 and 2.1 V could con-

Figure 5 (Color online) (a) Cycling performance of WS-CTPCs, MnO2 and MnO2@C materials; (b) rate performance of WS-CTPCs, MnO2 and MnO2@C
materials; (c) storage capacity of MnO2@C-0.3 at 0.1 A g−1 after 300 cycles; (d) storage capacity of MnO2@C-0.3 at 1.0 A g−1 after 600 cycles.
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ceivably be hypothesized that the reoxidation of manganese
contains two steps, which demonstrates that the oxidation
process of Mn to MnO2 is a two-step reaction process [49].
Associated with the evaluative results of XRD, the slightly
shifting left was probably attributed to that the MnO2 of
MnO2@C-0.3 is in the amorphous state, leading to the
conversions of CV measurement results of MnO2 and
MnO2@C-0.3. In addition, it is different from the MnO2

(Figure S7(a)), the four peaks still exist from the second
cycle (Figure 6(a)), which is strongly suggestive that cov-
ering the carbon materials is the effective way to overcome
the breaking of MnO2 in the charge-discharge processes.
However, the peaks were not observed obviously in the
MnO2@C-0.4 and MnO2@C-0.5 materials, revealing the
excess amount of WS-CTPs is not suitable for developing the
electrochemical performance of MnO2 (Figure 6(b)–(c)).
The electrochemical performance of MnO2 and MnO2@C

materials were further verified by the charge-discharge
measurements (Figure 6(d)–(f)). The first coulombic effi-
ciencies of MnO2@C-0.3, MnO2@C-0.4 and MnO2@C-0.5
were 56.2%, 45.5% and 47.3%, respectively. Generally, the
low first coulombic efficiencies are attributed to the forma-
tion of SEI and irreversible reactions between Li+ and active
materials. Compared with the MnO2 (Figure S7(b)), it was
observed that MnO2@C-0.3 exhibited a sloping charge-dis-
charge plateau, which is probably ascribed to the enhance-
ment of pseudocapacitance effect [50,51]. By contrast, this
sloping plateau was not observed in the MnO2@C-0.4 and
MnO2@C-0.5 materials. On the basis of the aforementioned
analyses, it can be assumed that dimensional hierarchical
porous structures of MnO2@C-0.3 are conducive to enhance
its pseudocapacitance effect [49,52].

The charge transfer abilities of MnO2 and MnO2@C ma-
terials were evaluated by electrochemical impedance spec-
troscopy (EIS) measurements (Figure 7). Figure 7(a)
exhibited that MnO2@C-0.3 possessed the smaller diameters
of semicircle loop at high frequency region than MnO2 and
other MnO2@C materials, suggesting that MnO2@C-0.3
showed a more excellent conductivity than the others. Ad-
ditionally, according to Yang et al. [7] and Tai et al. [9], the
Rct values of MnO2@C-0.3, MnO2@C-0.4 andMnO2@C-0.5
were calculated at 56.12, 68.08 and 263.90 Ω, respectively,
revealing the MnO2@C-0.3 owned more tremendous charge
transfer properties. It is considerable that three dimensional
hierarchical porous structures and excellent dispersions of
MnO2 in MnO2@C-0.3 accelerate the Li+ transfer so that the
reaction kinetics of MnO2@C-0.3 were improved remar-
kably [53].
In general, the σ value of the Warburg coefficient is used to

evaluate the Li diffusion performance. The Randles plot
plotting of Z′ with ω−1/2 (ω = 2πf) for a low-frequency is used
to obtain σ values (Figure 7(b)). Namely, the larger σ value
reflects the poor ion diffusion performance [54]. As a result,
the σ values of MnO2@C-0.3, MnO2@C-0.4 and MnO2@C-
0.5 were respectively calculated as 65.5, 72.2 and
209.2 Ω/s1/2, indicating that the MnO2@C-0.3 owned the
exceedingly higher Li+ diffusion performance than other
MnO2@C materials. The excellent transfer ability of
MnO2@C-0.3 was attributed to its complicated structures.
Therefore, it is thought that adjusting the dosages of WS-
CTPs is an effective way to synthesize the MnO2@C com-
posite materials having fabulous electrochemical perfor-
mance.
In accordance with a report by Wang et al. [52], the storage

Figure 6 (Color online) (a)–(c) CV curves of MnO2@C materials; (d)–(f) charge-discharge profiles of MnO2@C materials.
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mechanism of MnO2@C-0.3 was finally discussed. As
shown in Figure 8(a), it was obviously found that the
MnO2@C-0.3 exhibited excellent electrochemical stability
at different scan rates in a voltage range of (0.01–3.00 V).
After detailed calculations, the fact that the capacitive effect
occupied a relatively large proportion (64.0%) for a con-
tribution of storing Li+ was observed, which is higher than
that of MnO2@C-0.4 (60.7%) and MnO2@C-0.5 (46.4%),
respectively (Figure 8(d)–(f)). Because the specific surface
area of MnO2@C-0.3 is relatively small (84.7 m2 g−1), the
main capacitive contribution could be considered as pseudo-
capacitance rather than double layer charging. In summary,
the high pseudocapacitance contribution is ascribed to the
rapid electron transfer. The existence of abundant structural
defects in MnO2 can reduce the energy barrier of charge
transfer during the redox reaction, while the nitrogen and
oxygen elements in the carbon contents serve as active sites
to store lithium ions reversibly [53,55,56].

4 Conclusion

The WS-CTPs were prepared using coal tar pitches accord-
ing to a mixing acid method. The MnO2@C composite ma-
terials were successfully synthesized by using the KMnO4

and WS-CTPs. It is observed that complex porous structures
of MnO2@C can be controlled by adjusting the addition
amount of reactive materials of KMnO4 and WS-CTPs. The
complex porous structures and MnO2 in the amorphous state
enhanced the pseudocapacitance of MnO2@C materials,
leading to remarkable improvement in their storage capacity.
As an example, the storage capacity MnO2@C-0.3 is
965.7 mA h g−1 after 300 cycles at a current density of
0.1 A g−1. When the current density was set at 1.0 A g−1, the
MnO2@C-0.3 still exhibits the storage capacity at
450.3 mA h g−1 after 600 cycles. In light of the fact that the
coal tar pitches possess the cost-effective advantage, we will
consider that the method using WS-CTPs as a carbon source

Figure 7 (Color online) Nyquist plot results (a) and illustrations of relationships between Z′ and ω-1/2 in the low-frequency region (b). Among them, Rs
represents the resistances associated with solution, wires, and contacts. Rf and CPE1 (constant phase element) represent the Faradaic and non-Faradaic
pathways of the SEI layer, respectively. Rct is the charge transfer resistance, together with another CPE2, represents the charge transfer reaction. The Warburg
element W stands for the diffusion kinetics of the Li ion through the electrode materials.

Figure 8 (Color online) (a)–(c) CV curves of MnO2@C materials at different scan rates. (d)–(f) Capacitive contributions of MnO2@C materials at a scan
rate of 3 mV s−1.
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is a significantly favorable way to expand actual applications
of metal oxides in fabrications of electrode materials of
LIBs.
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